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Abstract

We develop two new models for gated, pulsed radio frequency interference (RFI), one for cycle
slip performance, and one for bit error performance. We compare the results of these two models to
an existing, approximate model that is currently present in ITU-R Report M.2220, herein referred
to as the dynamic duty cycle factor (DDCF) model. After deriving our new models, we show
through case studies that the new time-varying models often predict much worse performance than
the corresponding DDCF counterparts. We therefore conclude that further investigation (either by
simulation or laboratory measurement) is warranted to verify the new models presented herein.

Keywords: pulsed RFI, cycle slips, bit errors, duty cycle.
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Figure 1: Graphical depiction of pulsed RFI model. The red box depicts a window of time over
which C/N0 is averaged to produce an estimate of the degraded C/N0.

1 Introduction

Pulsed Radio Frequency Interference (pulsed RFI) is a phenomenon that can degrade the perfor-
mance of GPS receivers [1]—[9]. When strong pulses that lie within the GPS band are present at
the input of a GPS receiver, the input often saturates, which has the effect of masking any useful
data during the time periods that the pulses are present. The effect of the pulses on system per-
formance is a function of the receiver type (e.g., blanking vs. non-blanking, fast vs. slow), and,
hence, a significant amount of effort has been put into modeling the effect of pulsed RFI on various
receiver types.

Recommendation ITU-R M.2030 [1] provides a set of models for calculating the degradation ef-
fects of pulsed RFI by computing an equivalent continuous wave (CW) noise interference that
lowers the nominal carrier-to-noise density C/N0. A nominal depiction of pulsed RFI interference
that is considered in M.2030 is shown in Fig. 1. Here, the pulses are assumed to occur with a
regular pulse repetition frequency (PRF). The post-correlator effective degradation on C/N0 for a
saturating receiver as a function of the pulse duty cycle PDC is [1]:

∆C/N0 = 20 log(1 − PDC) (1)
PDC , PW × PRF (2)

where PW represents the pulse width (sec) and PRF is the pulse repetition frequency. Eqn. 1
represents a theoretical model of how to estimate C/N0 degradation, while the red box in Fig.
1 shows how one might compute this degradation via measurement. Instantaneous C/N0 values
would be obtained inside the window and the results would be averaged to obtain a crude estimate
of C/N0 when the pulsed RFI is present. If the pulsed RFI is persistent, it is easy to see from the
figure that the average value of C/N0 is roughly independent of the placement of the window and,
therefore, the estimate of C/N0 is an approximately time-invariant quantity. Therefore, it seems
reasonable to use this model of degraded C/N0 as an indicator for the four basic GPS receiver
functions (namely acquisition, carrier tracking, code tracking, and data demodulation).

NASA has proposed a plan to introduce a spaceborne scatterometer for its Solid Moisture Active
Passive (SMAP) Program that will be operating in the L2 frequency band [10]. GPS receivers op-
erating in this band are subject to corruption, and NASA is obliged to show that their scatterometer
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Figure 2: Pulsed RFI waveform with gating. The pulses are present for τobs seconds and are absent
for the remaining TTC − τobs seconds.

will not significantly degrade the performance of a GNSS receiver as compared to ambient opera-
tion. The scatterometer system uses a mechanical rotating antenna, which can illuminate a victim
GPS receiver for a short time (τobs = 300 msec) during each rotation period (TTC = 4.1 sec). A
graphical depiction of this new type of pulsed RFI waveform, where the pulsing is gated to model
the fact that the high frequency pulses will only be present at the receiver for 300 msec, is shown
in Fig. 2. There is a single sentence in ITU-R Report M.2220 which states that the corresponding
degradation in C/N0 should now be modeled as

∆C/N0 = 20 log(1 − PDCLIM) (3)

PDCLIM , PDC
τobs

TTC
. (4)

The degradation model of Eqn. 3 and 4, herein referred to as the Dynamic Duty Cycle Factor
(DDCF) model, states that one can view the gated pulsed RFI waveform as having a composite
duty cycle that is the product of the duty cycle of the pulsed waveform (PDC) and the duty cycle
of the of the gating waveform (τobs/TTC). While such a model is clearly convenient, its applicability
to modeling the real-world effects of such a pulsing waveform is questionable. Effectively, Eqn.
3 states that the effective degradation in C/N0 can be computed by averaging the C/N0 values in
the long red window of Fig. 2. While the instantaneous degradation may be large during the τobs

seconds that the pulsing is present, the remaining TTC−τobs seconds of quiescent behavior have the
potential to hide the negative contributions of the pulsing waveform when the long term average is
taken. It is possible —and in fact, quite likely—that the negative effect of the pulses during their
"on" time can impact receiver functionality far more than Eqn. 3 and 4 suggest.

In the remainder of this document, we develop new models for analyzing the impact of a gated,
pulsed RFI source which take into account the time-varying nature of the overall pulsed waveform.
In particular, we develop one model which allows us to characterize the average number of cycle
slips per second as a function of the gated, pulsed RFI parameters, and another model which allows
us to assess the probability of a bit error in data demodulation schemes. We compare the results
of these models to the corresponding results obtained by using the DDCF degradation model of
Eqn. 3 and 4, and we effectively show that the time-varying models often predict much worse
performance than the DDCF counterparts. We present our results for a variety of gating duty
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cycles, pulsed waveform duty cycles, and nominal C/N0 values to illustrate the large range of
differences between the two models.

2 Probabilistic Model for Cycle Slips

Cycle slips are an important measure of GPS receiver performance [5]. They occur when the
phase estimate of the carrier waveform shifts by 360◦. This offset is important as it degrades the
accuracy of a PNT solution. Moreover, when the incoming signal is encoded with data, cycle slips
(now of 180◦) can cause data bit inversions, thus creating bit errors. Here we present a model for
assessing the average number of cycle slips per second (ACS) as a means of quantifying cycle slip
performance, which, as we shall see, is largely linked to C/N0.

When C/N0 is constant, the number of cycle slips k in a a period of time t is Poisson distributed
[4, 5]. Specifically, if we denote by Pr{k(t)} the probability of k cycle slips occurring in t seconds,
we have

Pr{k(t)} =

(
t

T̄CS

)k

exp
(
−

t
T̄CS

)
k!

(5)

T̄CS =
π tanh(πθeΨ)

2BLθe

I2
0(Ψ) + 2

∞∑
n=1

(−1)n I2
n(Ψ)

1 +

(
n

Ψθe

)2


∣∣∣∣∣∣∣∣∣∣∣∣Ψ = ζ

(
p

2πσφ

)2 (6)

where T̄CS is called the mean time to cycle slip, and the parameters in Eqn. 6 are as listed in the
table below:

• θe: steady-state jerk angle.

• BL: one sided loop bandwidth.

• ζ: third order implementation loss.

• p: period of equivalent S-curve of tracking loop.

• σφ: RMS phase error of tracking loop.

• In(): n−th order modified Bessel function of the first kind.

For carrier tracking, the parameter σφ above is given by

σφ =

√
σ2

t + σ2
R + σ2

T (7)

σt =

√
BL

(C/N0)

(
1 +

1
2TL(C/N0)

)
. (8)
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Figure 3: Graphical depiction of periodically varying C/N0 for a low frequency gating waveform.

In Eqn. 7 and 8, TL refers to the coherent integration time, and σR and σT refer to the receiver and
satellite RMS noise levels, respectively. It is clear from Eqn. 8 that the RMS phase error is highly
a function of C/N0. In particular, as C/N0 decreases, σφ increases, and T̄CS decreases, meaning
that cycle slips become more frequent.

By virtue of the Poisson distribution in Eqn. 5, the expected number of cycle slips in a given time
E{k(t)} is

E{k(t)} =
t

T̄CS
(9)

Observe that the expected number of cycle slips grows linearly with time. We define ACS, the
average number of cycle slips per second, as the long-term average of the expected number of
cycle slips:

ACS , lim
t→∞

E{k(t)}
t

=
1

T̄CS
. (10)

When C/N0 is constant, Eqn. 10 tell us that the ACS is simply the reciprocal of the mean-time-to-
cycle slip, an intuitive result.

2.1 ACS for Periodically Varying C/N0

We model the effect of gating on the high frequency pulsed waveform by considering C/N0 that is
periodically varying, as depicted in Fig. 3. When pulsed RFI is not present (corresponding to the
case when the rotating antenna is not illuminating the GPS receiver), then the value of C/N0 is some
nominal value (C/N0)nom. When the pulsed RFI is present, the effective noise level increases, and
C/N0 is lowered for T1 seconds to a value we denote as (C/N0)RFI. This process repeats periodically
with period T2. In terms of the NASA SMAP example discussed in the introduction, T1 = τobs and
T2 = TTC (refer to Eqn. 4).

To derive an expression for the ACS in this new scenario, we first need to model the probability
that k cycle slips occur in a given time t. Because C/N0 now varies with time, the simple Poisson
model of Eqn. 5 does not directly apply. To begin, let us first find the probability mass function
for the number of cycle slips k that occur in one period of the C/N0 waveform T2. To aid us in
our computation, it is helpful to partition the time length T2 into two separate regions: a region
of length T1 where C/N0 = (C/N0)RFI and a region of length T2 − T1 where C/N0 = (C/N0)nom.
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Observe now that the following equality holds

Pr{k(T2)} =

k∑
m=0

Pr{m(T1)}Pr{(k − m)(T2 − T1)} (11)

The above relationship says the following: suppose that a total of cycle slips that occurs in time
T2 is k, and that of these k cycle slips, m of them occur in the first T1 seconds. It follows then that
k − m cycle slips occur in the remaining time T2 − T1. The probability that k cycle slips occurs in
time T2 is therefore the sum over all possible combinations of having m cycle slips occur in time
T1 and k − m cycle slips occur in T2. Observe that because C/N0 is constant over each interval:

Pr{m(T1)} =

(
T1

T̄CS RFI

)m

exp
(
−

T1

T̄CS RFI

)
m!

(12)

Pr{(k − m)(T2 − T1)} =

(
T2 − T1

T̄CS nom

)k−m

exp
(
−

T2 − T1

T̄CS nom

)
(k − m)!

(13)

Substituting Eqn. 12 and 13 into Eqn. 11 and evaluating the sum yields

Pr{k(T2)} =
µk exp(−µ)

k!
(14)

µ =
T1

T̄CS RFI

+
T2 − T1

T̄CS nom

. (15)

The above result is likely familiar to those who know queuing theory, as it is simply a restatement
that independent Poisson processes regenerate under addition. Those seeking a proof of this state-
ment are referred the Appendix. While the probability mass function (PMF) for the number of
cycle slips is not Poisson for an arbitrary time t, it behaves as a Poisson random variable when
the time interval under consideration is the period length T2. Moreover, it can be shown that for
integer multiples n of the period length T2 (see the Appendix for a proof):

Pr{k(nT2)} =
µk exp(−µ)

k!
(16)

µ =
nT1

T̄CS RFI

+
n(T2 − T1)

T̄CS nom

. (17)

A direct result of Eqn. 16 is that E{k(nT2)} = µ of Eqn. 17. We can use this result to compute the
ACS for the time-varying C/N0 waveform. We are interested in computing

ACS = lim
t→∞

E{k(t)}
t

. (18)

To compute this limit, we first note that the E{k(t)} is monotonically increasing with t. Indeed,
because the arrival times of individual cycle slips are modeled as independent, then whenever
t2 > t1,

E{k(t2)} = E{k(t1)} + E{k(t2 − t1)} ≥ E{k(t1)}. (19)
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In particular, whenever nT2 ≤ t ≤ (n + 1)T2, it follows that E{k(nT2)} ≤ E{k(t)} ≤ E{k ((n + 1)T2)}
and, moreover, that

E{k(nT2)}
(n + 1)T2

≤
E{k(t)}

t
≤

E{k ((n + 1)T2)}
nT2

. (20)

By the squeeze theorem,

lim
n→∞

E{k(nT2)}
(n + 1)T2

≤ lim
t→∞

E{k(t)}
t
≤ lim

n→∞

E{k ((n + 1)T2)}
nT2

. (21)

Utilizing Eqn. 17, we find that

lim
n→∞

E{k(nT2)}
(n + 1)T2

= lim
n→∞

E{k ((n + 1)T2)}
nT2

=

T1

T2

T̄CS RFI

+

1 −
T1

T2

T̄CS nom

(22)

which, by virtue of the inequality chain in Eqn. 21, leads to

ACS = lim
t→∞

E{k(t)}
t

=

T1

T2

T̄CS RFI

+

1 −
T1

T2

T̄CS nom

(23)

The result of Eqn. 23 has a somewhat intuitive appeal. If we define the variables

ACS nom ,
1

T̄CS nom

(24)

ACS RFI ,
1

T̄CS RFI

(25)

then Eqn. 23 is equivalent to

ACS eff =
T1

T2
ACS RFI +

(
1 −

T1

T2

)
ACS nom. (26)

where the "eff" subscript is used to denote the effective ACS of the time-varying model. Eqn.
26 states that the effective ACS when C/N0 varies periodically is a weighted average of two time-
invariant ACS’s, one corresponding to the nominal C/N0 and one corresponding to the C/N0 during
the pulsed interference.

2.2 Procedure for Comparing ACS: Time-varying Model vs. Av-
erage C/N0 Model

We now describe the method for computing ACS eff using our time-varying model and compare it
to the ACS DDCF, the ACS that is predicted by the DDCF model of Eqn. 3 and 4. After describing
the general methods in both cases, we shall present results for a variety of case studies.
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2.2.1 Computing ACS Using Time-varying Model (Eqn. 26)

As mentioned in the introduction, ITU-R Report M.2030 provides a model for computing the
degradation in C/N0 when non-gated, pulsed RFI is present (repeated here for convenience):

∆C/N0 = 20 log(1 − PDC) (27)

where PDC is the duty cycle of the high frequency, pulsed RFI signal. To compute ACS using the
time-varying model of Eqn. 26, we use the following procedure:

• For a nominal value of (C/N0)nom (when the pulsing is turned off by the gating waveform),
compute T̄CS nom using Eqn. 6.

• Use the computed value of T̄CS nom to compute ACS nom via Eqn. 10.

• For a given value of PDC, compute (C/N0)RFI = (C/N0)nom + ∆C/N0, where ∆C/N0 is com-
puted via Eqn. 27.

• Use (C/N0)RFI to compute T̄CS RFI via Eqn. 6 and then ACS RFI via Eqn. 10.

• For given values of T1 = τobs and T2 = TTC, compute ACS eff via Eqn. 26.

2.2.2 Computing ACS Using the DDCF Model (Eqn. 3 and 4)

Also mentioned in the introduction, ITU-R Report M.2220 [2] and ITU-R Recommendation M.2030
[1] provide a model for computing degradation in C/N0 when gated, pulsed RFI is present (repeated
here for convenience):

∆C/N0 = 20 log(1 − PDCLIM) (28)

PDCLIM , PDC
τobs

TTC
. (29)

where PDC is the duty cycle of the high frequency pulsed RFI waveform, TTC is the period of the
gating waveform, and τobs is the amount of time during one gating period for which the pulsed RFI
is present. To compute ACS using the DDCF model (denoted ACS DDCF), we use the following
procedure:

• For given values of PDC, τobs and TTC, compute (C/N0)DDCF = (C/N0)nom − ∆C/N0, where
∆C/N0 is computed via Eqn. 28 and 29.

• Using the calculated value of (C/N0)DDCF, compute T̄CS DDCF via Eqn. 6.

• Using the calculated value of T̄CS DDCF , compute ACS DDCF via Eqn. 10.
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Parameter Value
θe 0.7◦

BL 10Hz
ζ −1.0dB

p
2π, Pilot Tone
π, with Data

TL 20msec
σR 2.9◦

σT 2.2◦

Table 1: Parameter values used in ACS calculations that were used to generate Fig. 4 through Fig.
7.

2.2.3 Results

Figures 4 through 7 show the results of computing the ACS via the two different models for a
variety of scenarios. In each plot, the horizontal axis represents the duty cycle of the pulsed wave-
form from 1% to 50%, and the vertical axis shows the corresponding ACS (the gating duty cycle is
held constant for each plot). The dashed red waveform indicates the ACS predicted via the DDCF
model, ACS DDCF, whereas the blue waveform represents the ACS predicted by the time-varying
model, ACS eff. The nominal value of C/N0 is shown in the caption for each plot, and the values
for the various parameters that are inputs to Eqn. 6 for computing T̄CS are shown in Table 1.

Two different signal scenarios are depicted in the figures. Fig. 4 and Fig. 5 show ACS results for
the case where the signal being received is a pilot tone (no data modulation). Such a scenario is
characteristic of L2C receivers. In this case, a cycle slip occurs when a full 2π radians of phase
error has accumulated, which accounts for the choice of p = 2π in Table 1. By contrast, Fig. 6
and Fig. 7 depict ACS results when the received signal has modulated data. In this case, a cycle
slip can occur only after π radians of phase error (due to ambiguity of the data bit multiplication of
±1).

Some comments are in order. First, observe that whenever the gating duty cycle is 100%, the two
models produce the exact same result. Such is to be expected since the original (non-gated) pulsed
RFI waveform is obtained whenever gating is 100%. Also, observe that whenever PDC is small,
the two models also effectively produce the same results (when PDC is zero, there is no pulsed RFI,
and the two models should again produce identical results). As PDC increases from zero, the two
models produce strikingly different results, with the time-varying model producing significantly
higher estimates ACS eff than that of ACS than the DDCF model ACS DDCF. This effect is most
notable for small gating duty cycles (e.g., 7%), but is also pronounced for moderate gating duty
cycles (e.g., 25%) as well.

Overall, the depicted results indicate that the DDCF model may be overly optimistic in predicting
ACS. While some simulated and/or measured data should be obtained to verify the time-varying
model developed here, at the very least, the results suggest that one should use extreme caution in
applying the DDCF model for PDC values that are more than a few percent.
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Figure 4: ACS eff vs. ACS DDCF for a pilot tone, (C/N0)nom = 30dB

(a) Pilot Tone, Gating Duty Cycle = 7%

(b) Pilot Tone, Gating Duty Cycle = 25%

(c) Pilot Tone, Gating Duty Cycle = 100%
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Figure 5: ACS eff vs. ACS DDCF for a pilot tone, (C/N0)nom = 25dB

(a) Pilot Tone, Gating Duty Cycle = 7%

(b) Pilot Tone, Gating Duty Cycle = 25%

(c) Pilot Tone, Gating Duty Cycle = 100%
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Figure 6: ACS eff vs. ACS DDCF for a data-modulated signal, (C/N0)nom = 30dB

(a) Data-modulated, Gating Duty Cycle = 7%

(b) Data-modulated, Gating Duty Cycle = 25%

(c) Data-modulated, Gating Duty Cycle = 100%
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Figure 7: ACS eff vs. ACS DDCF for a data-modulated signal, (C/N0)nom = 25dB

(a) Data-modulated, Gating Duty Cycle = 7%

(b) Data-modulated, Gating Duty Cycle = 25%

(c) Data-modulated, Gating Duty Cycle = 100%

12



3 Bit Error Probability for L1 C/A and P(Y) Codes

We now turn our attention to modeling the effect of gated, pulsed RFI on data bit errors. The
cycle slip analysis of the previous section provides us some insight into how time-varying C/N0

will affect the probability of bit errors (cycle slips will cause data bit inversions on data modulated
channels). Here we perform a direct analysis of data bit error probability for a specific scenario,
namely L1 C/A (or P(Y) code) which uses a (32,26) Hamming code to decode the data. In this
particular case, for constant C/N0, the probability of a bit error conditioned on knowledge of carrier
phase error φe is given by [5]

PB|φe =
1
2

erfc
(
(C/N0) cos2 φe

RB

)
(30)

where RB is the bit transmission rate. The carrier phase error φe is itself a random variable with
PDF [5].

p(φe) =

exp
(

cos(φe−θe)
σ2
φ

)
2πI0

(
1
σ2
φ

) , |φe| ≤ π. (31)

where, again, σ2
φ is computed via Eqn. 7 and 8. The average probability of bit error is thus

PB =

∫ π

−π

PB|φe p(φe)dφe. (32)

When C/N0 is piecewise constant, as in Fig. 3, we can compute the average probability of error
using Bayes’ Rule. Suppose we denote by Pnom

B the average probability of a bit error when C/N0 =

(C/N0)nom, and PRFI
B as the average probability of a bit error when C/N0 = (C/N0)RFI. Then the

effective average probability of a bit error Peff
B is given by

Peff
B = PRFI

B P {C/N0 = (C/N0)RFI} + Pnom
B P {C/N0 = (C/N0)nom} (33)

= PRFI
B

T1

T2
+ Pnom

B

(
1 −

T1

T2

)
.

3.1 Procedure for Comparing Average Bit Error Probability: Time-
varying Model vs. Average C/N0 model

The procedure we use to compare the average bit error probability obtained via the time-varying
model to that obtained by the DDCF model is very similar to the procedure for comparing ACS
for the two models. We describe the exact procedures here and then present results for a variety of
case studies.

3.1.1 Computing Average Probability of Bit Error for Time-varying Model
(Eqn. 34)

• For a nomminal value of (C/N0)nom (when the pulsing is turned off by the gating waveform),
compute σφ via Eqn. 7 and 8.
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Parameter Value
θe 0.35◦

BL 10Hz
TL 10msec
σR 2.9◦

σT 2.2◦

RB 50 bits/sec

Table 2: Parameter values used in PB calculations that were used to generate Fig. 8 and Fig. 9.

• Substitute the computed value of σφ into Eqn. 30 and use this to compute Peff
B via Eqn. 32.

• For a given value of PDC, compute (C/N0)RFI = (C/N0)nom + ∆C/N0, where ∆C/N0 is com-
puted via Eqn. 27.

• Use (C/N0)RFI to compute the corresponding value of σφ via Eqn. 7 and 8, and use this value
to compute PRFI

B via Eqn. 32.

• For given values of T1 = τobs and T2 = TTC, compute Peff
B via Eqn. 34.

3.1.2 Computing Average Bit Error Probability Using DDCF Model (Eqn. 3
and 4)

The procedure for computing average bit error probability using the DDCF model, denoted by
PDDCF

B ), is again very similar to the procedure for computing ACS using the DDCF model:

• For given values of PDC, τobs and TTC, compute (C/N0)DDCF = (C/N0)nom + ∆C/N0, where
∆C/N0 is computed via Eqn. 28 and 29.

• Using the calculated value of (C/N0)DDCF, compute the corresponding value of σφ via Eqn.
7 and 8.

• Substitute σφ into Eqn. 30, and use this expression to compute PDDCF
B via Eqn. 34.

3.2 Results

Figures 8 and 9 depict the results of computing the average bit error probability for two different
scenarios. As before, the horizontal axis in each plot represents the duty cycle of the pulsed wave-
form from 1% to 50%, and the vertical axis shows the corresponding average bit error probability.
The dashed red waveform depicts PDDCF

B while the blue waveform depicts Peff
B for the time-varying

model. The nominal values of C/N0 are shown in the caption for each plot, and the values for
various parameters that inputs to the relevant equations are shown in Table 2.

The plots in Fig. 8 and Fig. 9 depict the same qualitative behavior as their ACS counterparts
Fig. 4 through Fig. 7; the two models coincide for gating duty cycles of 100% and for pulse duty
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cycles of 0%. Furthermore, for low gating duty cycles, Peff
B quickly grows to be much larger

than PDDCF
B as PDC increases. Therefore, the same general conclusions and warnings apply to the

average probability of bit error as for ACS: the DDCF model exhibits overly optimistic behavior,
so extreme caution should be used when applying it for situations where the PDC values are more
than a few percent.

4 Summary

Our goal in this document has been to evaluate the validity of the DDCF model that is currently
present in ITU-R Recommendation M.2030 [1]. Using the average number of cycle slips per sec-
ond and the average probability of a bit error as high-level performance indicators, we developed
models which explicitly take into account the time-varying nature of the C/N0 profile and com-
pared their performance to the approximate DDCF model. Our results indicate that in several
realistic scenarios, the newly developed time-varying models predict much worse performance
than the corresponding DDCF model and, therefore, the applicability of the DDCF model should
be questioned. Further analysis, either via simulation or laboratory measurement, is warranted to
assess the validity of the time-varying models presented herein.
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Figure 8: Peff
B vs. PDDCF

B , (C/N0)nom = 30dB

(a) Gating Duty Cycle = 7%

(b) Gating Duty Cycle = 25%

(c) Gating Duty Cycle = 100%
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Figure 9: Peff
B vs. PDDCF

B , (C/N0)nom = 25dB

(a) Gating Duty Cycle = 7%

(b) Gating Duty Cycle = 25%

(c) Gating Duty Cycle = 100%
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Appendix A

A.1 Proof of Eqn. 12 and 13

To simplify notation, we make the following definitions:

α ,
T1

T̄CS RFI

(34)

β ,
T2 − T1

T̄CS nom

. (35)

With the above substitutions, the sum of Eqn. 11 becomes

k∑
m=0

αme−α

m!
βk−me−β

(k − m)!
= βke−(α+β)

k∑
m=0

(
α

β

)m

m!(k − m)!
(36)

=
βke−(α+β)

k!

k∑
m=0

(
α

β

)m

k!

m!(k − m)!
(37)

=
βke−(α+β)

k!

k∑
m=0

(
k
m

) (
α

β

)m

(38)

=
βke−(α+β)

k!

(
1 +

α

β

)k

(39)

=
(α + β)ke−(α+β)

k!
(40)

Observe that the binomial theorem was applied in Eqn. 38 to obtain Eqn. 39. Noting that µ = α+β
completes the proof.

Implicit in the above derivation is the assumption that we consider a time interval of length T2

which starts on the falling edge of the C/N0 waveform of Fig. 3 and ends at the next falling edge.
This assumption, however, is not critical and the result holds for an arbitrary interval of length T2

as we now show. Suppose we consider an interval of length T2 which starts t units of time before a
falling edge of the C/N0 waveform. Then the probability that k cycle slips occur in an interval that
ends T2 seconds after this starting time can be expressed as

Pr{k(T2)} =

k∑
m=0

 m∑
n=0

αne−α

n!
βn−me−β

(n − m)!

 γk−me−γ

(k − m)!
(41)

α ,
t

T̄CS nom

(42)

β ,
T1

T̄CS RFI

(43)

γ ,
T2 − T1 − t

T̄CS nom

. (44)
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Observe now that

Pr{k(T2)} =

k∑
m=0

 m∑
n=0

αne−α

n!
βn−me−β

(n − m)!

 γk−me−γ

(k − m)!
(45)

=

k∑
m=0

(α + β)me−(α+β)

m!
γk−me−γ

(k − m)!
(46)

=
(α + β + γ)ke−(α+β+γ)

k!
. (47)

In the above, we have applied the first part of this proof twice in evaluating the sums. Noting that
α+β+γ = µ, we see that Eqn. 47 is equivalent to Eqn. 14. A similar set of sums can be written for
the situation that the initial starting point for the length T2 interval lies between the falling edge of
the C/N0 waveform and the rising edge, and the result is exactly the same. Hence, Eqn. 14 and 15
represent the PMF for the number of cycle slips that occur in an arbitrary time interval of length
T2.

A.2 Proof of Eqn. 16 and 17

The proof of this statement is very similar to the last proof of Eqn. 14 and 15 and, hence, many of
the details are omitted for brevity. Note that we have already proved the base case n = 1. Assuming
the statement is true for some arbitrary value of n, then the probability that k cycle slips occur in
time (n + 1)T2 can be expressed as

Pr{k ((n + 1)T2)} =

k∑
m=0

Pr{m (nT2)}Pr{(k − m) (T2)} (48)

Stated in words, the probability that k cycle slips occur in time (n + 1)T2 is the probability that m
cycle slips occur over the first nT2 seconds followed by k −m cycle slips occur in the following T2

seconds, summed over all possible values of m. We have already established that the two quantities
in the sum in Eqn. 48 are Poisson random variables. Hence, the same computation may be carried
out as in the Proof of Eqn. 14 and 15 to show the general result.
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